
November 2000 APPLIED CLINICAL TRIALS 1

nine steps, beginning with a sys-
tem idea and needs analysis and
continuing through to retirement.
The software development life
cycle (SDLC) portion is shown in
detail in steps 3 through 5 (design,
build, test). These steps are the
focus of the supplier’s computer
system validation (CSV) package.

Figure 1 also illustrates the
areas of close coordination with
the user group for refining the
user requirements specification
(URS, step 2), being audited in the
commissioning step (step 6), and
providing ongoing support and
enhancements under a service
level agreement (SLA).

Validating Computer Systems, Part 3

GCP Software Verification
Teri Stokes

oftware suppliers have
a tough job. Writing
software for use in a
GCP work process
adds an extra compli-

cation: preparing for many audits
of the software engineering pro-
cess itself as well as the software
application produced. Part 1 of
this series (August 2000) dis-
cussed a user acceptance package
for computerized system valida-
tion (CSV) to prove that the
“right” software was built for the
user requirements in the GCP
work process. Part 2 (September
2000) addressed the IT/IS depart-
ment’s CSV package to document
that the software was installed on
the “right” platform of compo-
nents and infrastructure. Part 3
explores the software supplier’s
CSV package that documents the
way the software was “built right”
to meet its design specifications.

The life of a software applica-
tion, as shown in Figure 1, has

S

Showing these steps in a flat,
two-dimensional picture with
arrows going in one direction is
misleading, because there is usu-
ally a lot of cycling back and forth
and refinement of specifications
between steps 2 and 3, when users
are shown demonstration or pro-
totype versions of an application.
At some point, however, the URS
must be frozen so that the func-
tional requirements can be final-
ized and the software design
description made for the program-
mers to use as a blueprint for
building the software application.

Requirements. The Questions
on the Path to a URS box lists

questions for defining require-
ments on any size of software
application. The key factor here is
that the user’s work process
requirements are written down
and agreed to by all parties before
the start of building the software.
Extra time taken to refine the URS
with the supplier can pay huge
dividends, because the rest of the
development process evolves as a
response to the URS. Any error at
the start builds error into the rest
of the process and the final prod-
uct. The cost to fix errors in speci-
fications grows exponentially
through each succeeding step of
the development cycle. Unclear

Technology UpdateTechnology Update

Writing software

for GCP use is

serious business.

Applications must

be tested and

retested to ensure

that they actually

do what they are

designed to do.

Figure 1. The software development life cycle in detail, and how it fits with the rest of the
application development cycle.

Application life cycle

Software development
life cycle

Platform system

9. Retire
Decommission

& replace

6. Commission
Validate & retest

after fixes

Fit ?
3. Design

Functional requirements
specification (FRS)
Software design

description (SDD)

7. Operate
GCP work
process

1. System idea
Needs analysis

report

8. Maintain

Fix & modify

IT/IS dept.
Software
supplier

User group

4. Build

Program/configure
to SDD using standards

LEGEND
URS User requirements

specification

SLA Service level
agreement

FRS Functional
requirements
specification

SDD Software design
description

URS

2. System plan

5. Test

Peer review, code review
unit, system, integration,

& regression testing

SLA

2 APPLIED CLINICAL TRIALS November 2000

requirements result in unreliable
software.

Designing. The supplier’s
response to the URS may be in one
or two technical documents, but
will include both functional specifi-
cations and design description.
• Functional requirements speci-

fication (FRS)—document to
describe the functions a system
or component must perform.1

• Software design description
(SDD)—document to describe
system or component architec-
ture, control logic, data struc-
tures, input/output formats,
interface descriptions, and
algorithms.1
The Software Specifications

and Testing box shows that all

requirements must be testable. A
good requirements document
lends itself to direct translation
into test scripts. If a user, function,
or design requirement cannot be
stated in a clear and precise way
so that it can be objectively tested,
then it is a “wish” and not a
“requirement.”

Building. Well-defined require-
ments also smooth the path for
the team building the software.
The software application can be
built in two ways.
• Programming. The supplier

can use a programming lan-
guage or object tool to write
source code for a unique soft-
ware application such as SAS
(SAS Institute, Cary, NC) or

Excel (Microsoft, Redmond,
WA).

• Configuration. The supplier
can configure an application by
setting preprogrammed varia-
tions in a configurable system
and writing small routines to
adapt it to the user’s specific
needs. Examples of such appli-
cations are a macro for ran-
domizing treatments and a
spreadsheet for scheduling
patient visits.
Testing. As different levels of

software code are built, tested,
adjusted, and retested, there is
frequently a great deal of recy-
cling between development steps
4 and 5 (Figure 1). Testing is con-
ducted in several ways. Peer
review is informal testing; a pro-
grammer gives the code to
another software professional to
try out and asks for comments
and suggestions. Formal types of
testing are defined below as per
IEEE Standard 610.12-1990.1
• Code review. A meeting at

which software code is pre-
sented to project personnel,
managers, users, customers, or
other interested parties for
comment or approval.

• Unit testing. Testing of individ-
ual hardware or software units
or groups of related units.

• System testing. Testing con-
ducted on a complete, inte-
grated system to evaluate the
system’s compliance with its
specified requirements.

• Integration testing. Testing in
which software components,
hardware components, or both
are combined and tested to
evaluate the interaction
between them.

• Regression testing. Selective
retesting of a system or compo-
nent to verify that modifica-
tions have not caused unin-
tended effects and that the
system or component still com-
plies with its specified require-
ments.
Although this formal develop-

ment and testing process is clearly
needed for large systems—such

as a sponsor’s clinical data man-
agement system and high-end sta-
tistical system—many people
question its usefulness for spread-
sheets, macros, and small applica-
tions used at investigator sites. In
fact, the same nine steps shown in
Figure 1 need to be traversed for
the life of any software used for
GCP purposes, but the size and
scope of each step is scaled to the
size and scope of the software
application. The CSV package
documents are also scaled to fit
the size of the software. A small
software systems development
form can be designed to cover
steps 2 through 6 using two sides
of one sheet of paper.2

Software supplier CSV
package
Producing a good CSV package in
software development is good
business and exercises the stan-
dard practices for good software
engineering. A well-defined and
well-documented software devel-
opment life cycle provides the
software supplier with manage-
ment control of the engineering
process. Clear requirements and
documented coding standards
lead to ef ficient and ef fective
building of software and the abil-
ity to bring new programmers
into a project with minimal ramp-
up time and reduced risk of
errors.

Documented formal testing of
a product under development pro-
vides traceability for changes and
a measure of the reliability of the
software and its capacity to pro-
tect the integrity of data it han-
dles. It lays a strong foundation
for problem resolution when the
application is out on the market or
future enhancements are consid-
ered. Test summary reports give
developers and testers the oppor-
tunity to present objective evi-
dence for how good they are at
creating robust, reliable software.
Good online and off-line user doc-
umentation facilitates user train-
ing, increases customer satisfac-
tion with the application, and

Extra time here pays off in a
smoother design process.
□ Who are the sponsors and

intended users?
□ What job is the system

expected to do in the work
process? Which tasks?

□ Where is the documentation
to describe in detail the user’s
GCP work process?

□ When is the software to be
released, updated, fixed,
tested, and maintained?

□ Why does the work process
need this software? Is it
safety- or efficacy-related?

□ How are users to be trained
and problems resolved during
ongoing operations?

Questions on the Path to a URS

□ User requirements, functional specifications, and design
specifications must represent actual requirements of
the work process and its platform system.

□ All requirements must be testable.
□ Testing must exercise all GCP aspects of specifications,

including:
• Functions
• Limits
• Invalid entries
• Error messages
• Access control
• Online help messages.

Software Specifications and Testing

Work process

Equipment

People

SOPs

Software application system

November 2000 APPLIED CLINICAL TRIALS 3

reduces the volume of help desk
support calls.

Experienced software suppli-
ers to the clinical trials market-
place understand that their clients
are responsible to the authorities
for the validation of software they
use. To meet that responsibility,

suppliers will be subjected to
client QA audits to assess the way
quality was built into the software
during development. A well-orga-
nized supplier CSV package that
emerges from the normal good
engineering practices of the sup-
plier’s business will reduce audit

time and audit follow-up work.
The Software Supplier CSV box

lists the items in the package.
Whether each item is covered by a
sentence, a paragraph, a page of
text, or a manual of information
will depend on the size and scope
of the software product being
developed and the size of the
effort being described.

Verification plan
The Institute for Electrical and
Electronics Engineers, Inc.
(IEEE) publishes a standard for
software verification and valida-
tion plans that can easily be
adapted.3 The Software Verifica-
tion Plan box shows a sample of
an outline for this purpose.

Every plan in the CSV pack-
age—verification plan, master test
plan, subordinate test plans—
must have a defined task list stat-
ing just what actions are to be
taken to execute the plan’s strat-
egy. Every plan must also have its
own summary report written to

explain to management the out-
come of the planned tasks. The
package summary report
includes the outcome of individual
tasks as well as the highlights of
summary reports from subordi-
nate plans. After all the tasks in
the supplier’s verification plan
have been completed, a package
summary report is written (see
the Software Package Summary
Report box for an outline).

CSV package team
The supplier’s CSV package is
produced by an identified pro-
cess carried out by a team of
responsible people. The roles
and responsibilities are essen-
tially the same as for the user
acceptance and IT/IS CSV pack-
ages. As shown in Figure 3, the
product decision group initiating
product development designates
a CSV package sponsor. The
package sponsor in turn assigns
a package team from among the
project group members, and the

Purpose and scope
□ Inclusions, exclusions, and limita-

tions.

Reference documents
□ SOPs, manuals, and policies refer-

enced by the plan.

Definitions
□ Terms required to understand the

verification plan.

Verification overview
□ Organization and master schedule

for the software verification effort.
□ Resources summary and responsi-

bilities for verification tasks (usu-
ally a three-column table listing
verification tasks, role[s] responsi-
ble, and due date).

□ Tools, techniques, and methodolo-
gies used in the verification effort.

Life cycle validation tasks at each phase
until retirement
□ Management of verification pro-

cess. Control procedures of qual-
ity management system require-
ments for SDLC.

□ Concept phase. Market analysis of
user needs.

□ Requirements phase. Refinement

of URS for specific client and
preparation of functional require-
ments specification.

□ Design phase. Development of
and approval for system design
description. Perform design trace-
ability analysis, design evaluation,
and design interface analysis.
Develop test plans.

□ Implementation phase. Perform
source code traceability analysis,
evaluation, interface analysis, and
documentation evaluation.

□ Test phase. Execute test scripts
for test plans and write test sum-
mary reports.

□ Installation and checkout phase.
Audit software installation pack-
age and check replication process
for accuracy. Write CSV package
summary report.

□ Operation and maintenance
phase. Establish help desk and
any other support/maintenance
activities. Develop bug fix,
release, and upgrade plan for soft-
ware product.

□ Retirement phase. Plan for prod-
uct retirement in original design.

Establish the off-site archive with
access and retrieval SOP.

Software verification reporting
□ Required and optional

records/reports to be written.

Verification administrative procedures
□ Anomaly reporting and resolution.

Problem/issues handling.
□ Task repetition policy. Criteria for

when to repeat testing or any
other verification task when its
input changes.

□ Deviation policy. How to report
actions taken that differ from the
plan.

□ Control procedures. How the soft-
ware application and engineering
system(s) are configured, pro-
tected, and stored—SOPs for
backup/retrieval, disaster recov-
ery, change control, and system
testing.

□ Standards, practices, and conven-
tions for verification work—poli-
cies, procedures, and templates
for logs, reports, and other items
in the CSV package.

aAdapted from IEEE Standard 1012-1986.3

Software Verification Plana

□ Plan identifier. ID number indicating system associated
with the plan

□ Summary of all verification SDLC tasks and their status.
□ Summary of all CSV package items and their status.
□ Summary of unexpected problems/issues and their resolution.
□ Summary of deviations from the verification plan and

rationale for deviations.
□ Assessment of overall software quality based on package doc-

umentation, test summary report, and QA audit report.
□ Recommendations. Release statement to management for

the release status of the software application system.
□ Approval signature(s) and date(s).
□ Appendix A. Update report form for recording major sys-

tem changes with related regression testing.
□ Appendix B. Table of contents for CSV package.
aAdapted from IEEE Standard 1012-1986.3

Software Package Summary Reporta

4 APPLIED CLINICAL TRIALS November 2000

□ Verification plan. Document describing
the purpose, scope, approach,
resources, and schedule of intended
verification activities for a specific
software development project (see
Software Verification Plan box).

□ Software engineering SOPs. Standard
procedures for naming conventions,
application interfaces, database
calling conventions, documenting
source code, testing practices, writ-
ing system manuals, release notes,
online help formats, debugging pro-
cess, change control.

□ Code and tools management log. The
first section in this tools manage-
ment logbook binder contains a writ-
ten description in text and in dia-
grams of the software engineering system configuration. It
also includes a list of all major components of the devel-
opment environment—server identifiers, associated
disks, versions of database, language, and software
tools, code management and testing tools, and overall
network topology.

□ SDLC. A written and approved description in text and dia-
grams to describe the software development life cycle
with documented input and output requirements per
phase and the roles responsible for review and approval
to allow software to progress from one phase to the next.

□ Programmer training records. CVs and training records to
show that everyone on the software development team
has experience and training appropriate to his/her role.

□ Software upgrade plan. Documented business process for
developing and releasing enhancements to the software in
a controlled manner after first release to the market.
Includes archive process for past versions with retention
times suitable for regulatory requirements.

□ QMS. Documented quality management system with man-
agement commitment to a corporate quality policy and QA
organization to conduct independent internal audits of the
SDLC activities for compliance with engineering SOPs and
corporate quality policy and practices.

□ Audit logs. Configuration management logbook binder sec-
tion to record date, time, and participants in any audits or
inspections of the supplier by internal QA, external clients,
or regulatory authorities. Audit reports per se are kept
company-confidential by QA department.

□ Master test plan. Document that describes the technical and
management approach to be followed at project level for
testing a software product. Typical contents identify the
items to be tested, tasks to be performed, responsibili-
ties, schedules, and required resources for the testing
activity. Document also describes the number and type of
specific test plans to be developed for a given software
product—unit test plan, system test plan, integration test
plan, regression test plan.

□ Test case. Document specifying the details of the testing
approach for a platform feature or combination of features
and identifying associated test scripts—system power
up/down, system backup/recover, server connectivity to

desktops/printers/remote sites across a network.
□ Test script. Document specifying inputs, predicted results,

and a set of execution conditions for an individual test.
Includes one or more step procedures that describe
keystrokes or other tester actions and provide log space
for recording system response to test activity.

□ Test summary report(s). Document(s) summarizing testing
activities and results per test plan under the master test
plan. Include(s) an evaluation of software quality based on
testing results.

□ SDD. Software design description—a blueprint or written
model of the software system created to facilitate analy-
sis, planning, implementation, and decision-making in
building a software system.

□ Application code. Computer instructions and data definitions
in a form suitably designed to fulfill the specific needs of
a user.

□ SDLC documentation. All QMS documentation associated
with the SDLC process—signed phase review documenta-
tion, testing documentation, code annotations.

□ Support contract (SLA). Service level agreement(s) with
clients purchasing a regulated application from the soft-
ware supplier (see Figure 4).

□ Application manuals. Instruction manuals to train IT/IS
and/or system administrators in how to install and man-
age the software application system and instruction manu-
als to train users in how to operate the software in their
GCP work process.

□ User training. Online or hard copy training courses and
materials for the client’s users and their system adminis-
trators working with the software application in the GCP
work process.

□ Problem help. Documented process with defined escalation
procedure for help desk technical support to resolve user
problems with the software application.

□ Supplier’s CSV package summary report. Document summariz-
ing all CSV package activities initiated under the verifica-
tion plan and the results of those activities. It also con-
tains an evaluation of the software application system’s
readiness to perform as intended and be operated in com-
pliance with regulatory requirements. (See Software Pack-
age Summary Report box for recommended outline.)

Software Supplier CSV Package

Figure 2. The software supplier’s CSV package.

Verification plan

Software engineer SOPs,
code & tools mgmt. logs,

SDLC, programmer
training records

Software upgrade plan,
QMS & audit logs

SDD, application code,
SDLC docs., support

contract (SLA)

Application manuals,
user training, problem help

Master test plan

Test cases, scripts,
data & result logs

Test summary
report(s)

Supplier's CSV package summary report

November 2000 APPLIED CLINICAL TRIALS 5

quality assurance department
will audit the CSV package pro-
cess and its documentation for
compliance with the firm’s qual-
ity management system and soft-
ware quality standards.

The package sponsor is usually
the senior manager responsible
for the product’s development
effort. The team leader is
assigned by the package sponsor
and is usually the individual who
carries the engineering responsi-
bility for building a quality prod-

uct. The team leader selects the
rest of the team. The CSV package
roles and responsibilities are
shown in the Software Supplier
CSV Team Roles box. These roles
apply to the software supplier dur-
ing development and also to the
CSV package teams of the user
group and their IT/IS department
for validation of the software prod-
uct in the work process.

It is extremely unwise to give in
to the temptation to reduce the
number of CSV package team

members from three to one. With
turnover in the workforce, it is
only good business sense to have
more than one person understand
the software product and its CSV
package well enough to defend it
in audits and inspections. It is also
good to assign roles to people
whose jobs in the project are asso-
ciated with creating key items in
the CSV package—for example,
project manager as team leader,
quality control secretary as pack-
age manager, and software tester
as test coordinator. In this way,
package items can flow out of the
direct work activities in the pro-
ject rather than being seen as
added overhead at the end. For
very small projects, the team
leader can choose to also carry
one of the other two roles—but
not all three.

Software development
platform
Software applications are created
using various configurations of
hardware, operating systems, net-
works, databases, programming
languages, design and coding
tools, graphical user interfaces
(GUIs), and testing tools. When
developing critical software appli-
cations, it is important to docu-
ment this platform and to check
the application for any effects
from changes made to the devel-
opment platform.

Changing a database version,
for example, may interfere with
the performance of some
database calls already pro-
grammed into the application; and
these would have to be rewritten.
Changing automated testing tool
versions may result in certain
prior test cases not executing as
expected. Moving to a new GUI
version may cancel the action of
or hide the view of certain buttons
previously programmed.

Replacing like-for-like compo-
nents in a platform should not
cause problems, but—as with
generic replacement of branded
drugs—some unexpected varia-
tions can emerge. Installation

qualification testing should be per-
formed on all components of the
development platform. Checklists
can be used to verify and docu-
ment that all key aspects of the
installation adhere to the specifi-
cations and recommendations of
the component’s manufacturer
and that the component is appro-
priate for the development plat-
form’s configuration. The configu-
ration itself should be
documented and changes tracked
in a configuration management
logbook.

As the Documenting the SDLC
Platform box illustrates, platform
security, maintenance records,
backup and recovery logs, and the
disaster plan are to be docu-
mented in an organized way for
software development platforms.
It should always be possible to
trace the logical and physical envi-
ronment used for creating critical
software.

The escrow process is one
major dif ference between user
platform systems and software
development platforms. The
escrow process goes beyond the
usual archive activity to specify
that an official third party will
have secured custody of a master
copy of the firm’s software prod-
uct. In the event that the software
supplier goes out of business, its
customers have a defined legal
right to contact the third party and
access a copy of the source code
for use in ongoing support of their
operations.

Supplier and user SLA
partnership
The service level agreement
(SLA) for a critical software sys-
tem used for GCP purposes is
more than a commercial contract.
It is a commitment from both
sides for supporting the success
of the application in its operational
environment and compliance with
regulatory standards. The more
direct impact the software applica-
tion has on the safety, efficacy, and
quality of subject care or the
integrity of safety and efficacy

Figure 3. The software verification package team.

Product decision group
Funds and approves software development

Package sponsor
Funds & approves

CSV package

Quality assurance
Audits CSV package &

hosts client audits

Test coordinator

Package manager

Team leader

CSV package team
Develops & maintains

CSV package

Package sponsor Provides personnel, budget, and equip-
ment. Approves CSV package plan and package summary
report. Assigns a team leader.

Team leader Identifies and leads a package team. Approves
test plan and test summary report. Drives the package pro-
cess and identifies ad hoc members as needed. Writes
package summary report.

Package manager Drives item preparation, manages a pack-
age archive, and checks the quality of documents in produc-
tion for their ability to pass audits.

Test coordinator Develops test plan and other test documen-
tation. Identifies and trains testers and witnesses in formal
testing practices. Manages formal testing process. Writes
test summary report.

Ad hoc members Provide administrative support, specialty
expertise, consulting, training, testing, or other support as
needed. System size and scope determine the size of this
component.

QA auditor Trains team on regulatory requirements for the
system and audits the package for progress on plans and
compliance with regulations.

Software Supplier CSV Team Roles

6 APPLIED CLINICAL TRIALS November 2000

data in the trial, the more impor-
tant is the need for an actively
managed SLA. Examples of high-
impact software in GCP areas
would be software that calculates
the amount of radiation treatment
to be administered, or measures
tumor reduction on digitized X
rays, or tracks and reports serious
adverse events.

An SLA establishes the mutu-

ally agreed-upon criteria and mile-
stones for success of the software
application during its operational
phase. It discusses the ongoing
needs for the user’s work process
and the supplier’s ongoing needs
for providing service and support.
Both sides of any partnership
have responsibilities. If the user
group doesn’t perform its half of
the job (for example, allowing

access and downtime for routine
maintenance), the supplier’s
capacity for service and support is
diminished and the application
may be put at risk—if, for exam-
ple, unresolved small issues lead
to a major breakdown. Figure 4
illustrates the SLA process
between software supplier and
user team.

The number and type of topics
to be addressed in an SLA will
vary with the complexity of the
application and the extent of its
interaction with the work process.
As the GCP work process
changes, the software may have
to be adjusted with interface mod-
ifications, functional enhance-
ments, or performance improve-
ment. Such fixes or patch releases
then need to be retested under
change control and reissued with
relevant updates to the user train-
ing materials (release notes).
While the user team retrains
users, the supplier retrains the
help desk personnel on query res-
olution for the new fixes and/or
enhancements.

Documented control of soft-
ware change on both sides of the
SLA partnership is critical, and

the tracking of problem resolution
activities over time is important
for analyzing trends and taking
preventive action to ward off
major system malfunctions. Regu-
lar reviews and reports of
changes, problem trends, and
continuing training efforts by the
SLA partnership to the user
team’s management (business
decision group) should keep the
software application system in
robust good health for GCP com-
pliance.

Many of the SLA discussion
points in Part 2 of this series
(“GCP Validation of Platform and
Infrastructure Systems,” Septem-
ber 2000) can be adapted to the
software supplier SLA situation. In
addition, software suppliers are
advised to closely study the sec-
tions on servicing and other rele-
vant topics in the quality standard
ANSI/ISO/ASQ Q9000-3-1997.4
This is the latest version of the
ISO 9003 standard that has been
updated with annotations by the
American Society for Quality
(ASQ) and approved as an Ameri-
can National Standard. It dis-
cusses in detail what constitutes a
strong quality assurance program
for software development and sup-
port in a reputable software com-
pany for any marketplace.

It is important for all parties to
remember that the goal of the SLA
is the successful operation over
time of the software application in
the GCP work process. SLA suc-
cess is measured by its
• controlled, reliable handling of

GCP data in clinical research.
• protection of the system user

and/or clinical subject from
any hazard due to system oper-
ations.

• preservation of the integrity of
GCP data throughout its collec-
tion, processing, storage, and
retrieval by the software appli-
cation in the work process.
Part 4 will conclude this series

with a look at the role of quality
assurance professionals in com-
puter validation and the prepara-
tion and maintenance of all three

Figure 4. The service level agreement (SLA) defines the ongoing partnership between the
users and the software supplier over the life of the application.

Software supplier

Software application

Work process

Equipment

People

SOPs

Software application system

User team

CSV pkg.CSV pkg. SLA

Service/success
level agreement

Defines:
•Users’ ongoing work

and training needs

•Supplier's help desk
and support needs

•User and supplier roles
and responsibilities

•Ongoing problem
resolution tracking

Help desk

Fixes &
upgrades

The software development platform must be traceable
through careful documentation.

Configuration management
logbook binder
□ Configuration. System compo-

nents and versions of hardware,
software, languages, and tools.

□ Platform security. Access rights,
user privileges, software code
manager, training.

□ Maintenance and support records.
Change records, service visit
logs.

□ Backup and recovery log. Disaster
plan—daily, weekly, monthly,
yearly.

□ Archive and escrow process. Control
of master copy of software and
updates.

Documenting the SDLC Platform

Computer system

Hardware

Software

SDLC platform

November 2000 APPLIED CLINICAL TRIALS 7

CSV packages described in the
series. To be or not to be involved
is the QA question. How to be
involved will be the series’ answer.

References
1. Institute for Electrical and Electron-

ics Engineers, Inc., IEEE Standard
Glossary of Software Engineering
Terminology, Standard 610.12-1990
(IEEE, Piscataway, NJ, 1991).

2. Teri Stokes, “Computer Systems
Validation, Part 4: Operating GCP

Systems at Investigator Sites,”
Applied Clinical Trials, April 1997,
54–60 (available at http://
pharmaportal.com/articles/stokes.
cfm).

3. Institute for Electrical and Electron-
ics Engineers, Inc., IEEE Standard
for Software Verification and Valida-
tion Plans, Standard 1012-1986
(IEEE, Piscataway, NJ, 1993), pp.
12–19.

4. American Society for Quality, Qual-
ity Management and Quality Assur-

ance Standards—Part 3: Guide-
lines for the Application of
ANSI/ISO/ASQC Q9001-1994 to
the Development, Supply, Onstalla-
tion and Maintenance of Computer
Software (Quality Press, Milwau-
kee, WI, 1997; available for pur-
chase at www.asq.org).

Teri Stokes, PhD, is senior consul-
tant and director, GXP Interna-
tional, 131 Sudbury Road, Con-
cord, MA 01742, (978) 287-4393,
fax (978) 369-5620.

ACT Online
ACT’s Web presence continues to grow and change. New
items are posted frequently!

Validation series
Look for the current validation series online, along with Teri
Stokes' earlier series on validating GCP computer systems at
investigator sites.

Monitoring forms
Wendy Bohaychuk’s and Graham Ball’s monitoring reports are
available for download.

IT directory
Find IT solutions for your trials with up-to-date information from
our 2000 directory—now online.

Glossary
The new and improved glossary of clinical trials terminology and
helpful acronym directory are also on the site.

See what’s new today at www.pharmaportal.com

Management control

Controlled software
development process
using computerized tools

System reliability
Consistent, intended
performance of
software product

Data integrity
Secure, accurate code
that is traceable to
product design specs

Auditable quality
Documented evidence for
control and quality of
product and process

e

Software supplier's verification goals

